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Abstract—Manufacturing process variation in sub-20nm pro-
cesses has introduced ever increasing overhead in Static Timing
Analysis (STA) in order to guarantee the reliable operation
of the circuit. Chip designers apply corner-based analysis and
add guard-bands to design parameters in order to take into
account the impact of process variation on timing. However, the
aforementioned techniques are either too slow as the number
of design parameters proliferates with the integration of more
components into a chip or inaccurate due to the assumption that
the worst case delay resides at the corners of design parameters.
In this paper, we present a novel statistical methodology, which
relies on Extreme Value Theory (EVT), to estimate the worst
case delay of VLSI circuits under variations in gate/interconnect
parameters. Despite the previous statistical approaches toward
maximum delay estimation, our methodology can be applied
regardless of the underlying gate/interconnect delay model or
any assumption about the distribution of the Arrival Time (AT)
at every circuit node, making it very appealing for integration to
any level of timing analysis abstraction (from spice-to-gate level)
and provide fast yet accurate results. Experimental results on
ISCAS85/ISCAS89 circuits show that the estimated maximum
AT at the Primary Outputs (POs) can be within 5% of the
true maximum AT, at the cost of a few thousand Monte Carlo
simulations.

I. INTRODUCTION

The advent of the aggressive technology scaling era has
introduced extensive spreads in the transistor and interconnect
parameters. Gate and interconnect delay, which is a function of
the aforementioned parameters, has to be considered random,
distributed between a minimum and a maximum value. As
a result, chip designers have to take into account process
variation so that they can ensure reliable operation of the
circuit. We can distinguish two approaches to verify timing
under variation. The first one and most often used-in industry
is corner-based analysis. In the corner-based methodology
the circuit is simulated at the corners of the design param-
eters where designers expect to find the worst-case delay. In
the second method, timing verification is performed through
Statistical Static Timing Analysis (SSTA), looking for the
distributions of ATs at the Primary Outputs (POs). These
distributions then, provide useful information that enable the
estimation of worst-case AT. SSTA can be performed either by
distribution propagation from any Primary Input (PI) to any
PO or by Monte Carlo (MC) simulations. The former method
is faster, but leads to less accurate results, than the latter one.

Although previous works toward worst case delay esti-
mation are attractive and provide meaningful insights into
the problem, they are either too slow for large designs or
inaccurate, as they are based on simplistic assumptions about
the underlying delay models for the interconnect/gates or the
propagated distributions across the circuit nodes when SSTA
is performed. More specifically, [1] approximates the result of
the non-linear MAX operation between two random variables
normally distributed with a normal distribution. However, they
do not test the effectiveness of their proposed approximation
on a convincing set of benchmarks. In any case the assumption
they make is not supported by the stochastic process theory
and we expect their approximation to deviate even more from
the true distribution when complex gates with more than two
inputs are considered. Furthermore, [2] and [3] model the

delay response with a Response Surface Modeling (RSM)
method and obtain the worst delay based on that model.
However, due to an unprecedented increase in transistor and
interconnect complexity (large number of metal layers) [4]
RSM would require prohibitive number of simulations to
cover all the dimensions of the problem in the design of
the experiments. The authors in [5] focus only on one stage
and derive the worst case delay condition studying different
interconnect structures and gate drive strengths. They provide
useful guidelines for the selection of the capacitance and
resistance values for an interconnect that results in the worst-
case delay for the stage. However, they do not comment on
how the worst case delay condition can be extended to the
whole circuit, as it is infeasible to extract a global worst
case condition due to the existing inter-dependencies between
the delay of a gate/interconnect and the parameters of the
following gates/interconnect on a path.

To this end, in this paper we present a novel statistical
methodology, which relies on EVT to estimate the worst AT
at the POs of VLSI circuits, under variations on parameters
that determine gate and interconnect delay. The contribution
of our work is that the proposed methodology can provide fast
yet accurate results irrespective of the timing models or any
assumption about the distributions of AT at the circuit nodes.

The rest of the paper is organized as follows. Section
II provides a brief introduction to EVT and presents how
an upper end point of a bounded random variable can be
estimated, exploiting elements from EVT. Section III explains
why it is infeasible to extract a global worst case condition
for the parameters that affect the delay under process variation
apriori. Section IV presents our methodology for the worst
case delay estimation. Section V comments on the results of
the proposed methodology applied on the ISCAS benchmarks.
Finally, conclusions are drawn in Section VI.

II. THEORETICAL BACKGROUND

A. Modeling Extreme and Rare events
Extreme value theory is a branch of probability theory that

focuses on the study of extreme and rare events. There are two
possible methods of modeling extreme statistics on the basis
of a random sample Xn = {X1, X2, . . . , Xn}1, where Xis
are independent, identically distributed (i.i.d) random variables
from the cumulative density function (cdf) F , namely the Block
Maxima method and the Peak Over Threshold method. The
first one divides the data sample Xn into l blocks of size m
and then holds the maximum from each block, making a new
sample of maximas Ml = {M1, M2, . . . , Ml}. The sample of
maxima follows a distribution with cdf that is given by [6]:

FM = P (X1 ≤ x, . . . ,Xm ≤ x) =
m∏
i=1

P (Xi ≤ x) = Fm(x)

(1)

1Bold letters denote vector variables, while non-bold letters denote scalar
variables.



The other method takes the k largest values from the data
sample Xn that exceed a predetermined high threshold u
and forms a separate sample of exceedances (Xex). Again,
assume that the sample of exceedances consists of i.i.d random
variables from the cdf F . The sample of exceedances follows
a distribution with (conditional) cdf that is given by [6]:

FZ(z) = P (X − u ≤ z|X > u) =
F (z + u)− F (u)

1− F (u)
(2)

B. EVT: Limiting Distributions
We first need to define the concept of the upper end point,

which plays a central role in the prediction of the worst case
delay.

Definition 1: The upper (or right) end point ω(F ) of cdf
F (x) is defined as the upper bound of the support of F (x):

ω(F ) = sup{x : F (x) < 1} (3)

The upper end point represents the maximum value that the
associated random variable can acquire and becomes ω(F ) =
F−1(1) if the random variable is bounded or ω(F ) = +∞ in
the opposite case.

The two fundamental theorems, upon which EVT relies,
designate the limiting distributions of maxima sample defined
in eq. (1) when m → ∞ and the limiting distribution
of exceedances over a threshold defined in eq. (2) when
u → ω(F ).

Theorem 1 (Fisher-Tippet [7]): Sample Maxima cdf (FM ),
for given normalizing constants, am, bm converges to the
Generalized Extreme Value (GEV) as m tends to infinity:

lim
m→∞

FM (amx+ bm) → Hξ = e−(1−ξx)ξ
−1

(4)

where ξ is a parameter that determines the shape of H and
depends on F (x).

H can be classified, with respect to the shape parameter ξ,
into one of the following cdfs:

Frechet:

Hξ<0(x) =

{
0, x ≤ µm

e−( x−µm
σm

)−ξ−1

, x > µm

where µm = 0 and σm = F−1
(
1− 1

m

)
.

Weibull:

Hξ>0(x) =

{
e−(−( x−µm

σm
)ξ

−1
), x ≤ µm

1, x > µm

(5)

where µm = ω(F ) and σm = ω(F )− F−1
(
1− 1

m

)
.

Gumbel:

Hξ→0(x) = e−e
− x−µm

σm , x ∈ ℜ (6)

where µm = F−1
(
1− 1

m

)
and σm = m

∫ ω(F )

F−1(1− 1
m )

(1− F (y))dy.
Theorem 2 (Balkema and de Haan [8] and Pickands [9]):

Exceedances over threshold (Xex) (conditional) cdf, for a

given scale factor bu, converges to the Generalized Pareto (GP)
cdf as u tends to ω(F ):

lim
u→ω(F )

FZ(
z

bu
) → GPξ(z) = 1− (1− ξz)ξ

−1

(7)

where ξ is a parameter that determines the shape of GP and
depends on F (x).

Depending on ξ, GPξ belongs to one of the following
distribution families:

Pareto:

GPξ<0(x) =

{
0, x ≤ u

1− ( (x−u)+σu

σu
)ξ

−1

, x > u

where σu = u.

Beta:

GPξ>0(x) =

{
1− (− (x−u)−σu

σu
)ξ

−1

, u < x ≤ u+ σu

1, x > u+ σu

(8)

where σu = ω(F )− u.

Exponential:

GPξ→0(x) =

{
0, x < u

1− e−
x−u
σu , x ≥ u

(9)

where limu→ω(F )
σu

ξ(ω(F )−u) = 1 when ξ > 0 and
limu→ω(F )

σu

−ξu = 1 when ξ < 0.

C. Estimation of a finite upper end point ω(F )

An important fact derived from the limiting cdfs in eq.(5, 8)
is that a parent cdf with an infinite upper end point (ω(F ) =
+∞) can only have an extreme value distribution with ξ < 0,
whereas a cdf with a finite upper end point (ω(F ) < +∞)
suggests an extreme value distribution with ξ > 0. Notice
that Weibull and Beta cdfs reach 1 for all x values greater
than a finite threshold. However, if ξ → 0+ (ξ ↓ 0), then
ω(F ) cannot be efficiently or accurately estimated through
the previous set of distributions and parameters constructed
for the general case ξ > 0 [10] and we need to exploit, one of
the (6) or (9) with corresponding parameters, which are related
to the special case ξ ↓ 0. The estimation of upper end point
ω̂ has been studied thoroughly in [11]. Below we present the
formulas to get an upper end point estimate, as well as the
corresponding confidence intervals to measure the accuracy
of the estimate, from the sample of maxima or the sample of
exceedances for the cases ξ ↓ 0 and ξ > 0 respectively.

For the first case ξ > 0, upper end point estimate can be
obtained as follows:

ω̂(F ) = σ̂u + u (10)

where σ̂u is Maximum Likelihood (ML) estimate of parameter
σu that characterizes the Beta probability density function
(pdf).

As we discussed in the previous subsection, the pdf of the
Beta family (8) (gp(x) = dGP

dx )ξ>0) is the limiting distribution
that models asymptotically the sample of exceedances over
a threshold when ξ > 0. The corresponding log-likelihood
function of a Beta-distributed sample of size k is:



logL(σu, β) =
k∑

i=1

(
log

β

σu
+(β−1)log

(
− (Xi − u)− σu

σu

))
(11)

Maximization of (11) with respect to σu and β yields
estimates σ̂u and β̂. The confidence interval that corresponds
to a confidence level of (1− δ) ∗ 100% is [12]:

| ω̂(F )− ω(F ) |≤
zδ/2√

r
σ̂u(β̂ − 1)

√
β̂ − 2

β̂
(12)

where zδ/2 is the δ/2 quantile point of the standard normal
distribution N(0, 1).

We follow the exceedances method instead of the maxima
method when ξ > 0 for two reasons. The first one is because
the Beta distribution for exceedances in (8) is a function of
two parameters, whereas the Weibull distribution for maxima
in (5) is a three-parameter function and as a result the Beta log-
likelihood function is more convenient to optimize. The second
reason is because we expect the size of exceedances sample to
be greater than the size of maxima sample and consequently
to give a better quality in the final estimate.

On the other hand, the lack of a parametric expression
of ω(F ) in the exceedances approach renders the maxima
method, for which ω(F ) appears as a parameter (see σm in
eq. (6)), our only option when ξ ↓ 0. An estimate for the
upper end point, when ξ ↓ 0, can be given from the following
formula:

ω̂(F ) = µ̂m +
σ̂m

1 +
√
π log l(erf(

√
log l)− 1)

(13)

where erf(x) =
2√
π

∫ x

0
e−t2dt is the well-known error func-

tion and µ̂m, σ̂m are the ML estimates of µm and σm of
Gumbel, respectively.

The pdf of the Gumbel family (6), as we discussed in the
previous subsection, is the limiting distribution that models
asymptotically the sample of maxima when ξ ↓ 0. The
corresponding log-likelihood function of a Gumbel-distributed
sample of size m is:

logL(µm, σm) = −
m∑
i=1

(
Xi − µm

σm
+exp(−Xi − µm

σm
)+log σm)

(14)
Both µ̂m and σ̂m can be obtained by the maximization of

(14). A confidence interval for the estimate (13) (correspond-
ing to a confidence level of (1− δ) ∗ 100% ) is given by:

| ω̂ − ω |6
zδ/2√
n

σ̂n

√
6

π
·

√
(γ − 1)2 +

π2

6
+

2(1− γ)

sm
+

1

s2m
(15)

where sm = 1+ l
√
π logm(erf(

√
logm)− 1), zδ/2 is the δ/2-

quantile point of the standard normal distribution and γ ≃
0.5772 . . . is the Euler gamma constant.

In order to complete the discussion about upper end point
estimation, we have to show how to determine which of the
two cases ξ > 0 or ξ ↓ 0 takes place, given a sample Xn, as
the parent cdf F (x) is, most likely, unknown. To this end, the
authors in [11] propose a test statistic T (X) and a rejection
region Cα which corresponds to a given significance level
α to question the null hypothesis H0 : ξ ↓ 0 against the
alternative hypothesis H1 : ξ > 0. If T (X) falls into Cα,

then H0 is rejected at this particular significance level. Given
the cdf FT (x) of T (X) under the null hypothesis, the critical
region takes the form Cα = {X : T (X) ≥ F−1

T (1 − α)}
so that the probability of T (X) falling into Cα is equal to
α. The test statistic presented below, when evaluated on the
sample of exceedances (consisting of k units samples), tends
asymptotically (as k → ∞) to a normal distribution under the
null hypothesis H0:

TXex =

(mXex−u)2

s2Xex

2√
k

∼ N(0, 1) (16)

where mXex and sXex are the mean and standard deviation of
Xex. Accordingly, the critical region for a one-tailed test [12]
is:

Cα = Xex : T (Xex) ≥ zα (17)

where zα is as usual, the α quantile point of the standard
normal distribution ∼ N(0, 1).

III. WORST CASE DELAY ANALYSIS

The worst-case condition for one stage, when studied in
isolation of the rest of the circuit, may provide the best-
case conditions for the previous stage. In this section we
demonstrate why it is infeasible to extract a global worst-case
delay condition apriori.

A. Impact of Design Parameter Variations on Maximum Delay
The delay of a path (D) can be calculated by adding all the

individual delays corresponding to gates & wires on the path.
More specifically, the delay of the i-th gate on a path (di) is
proportional to the total driving capacitance CL given by:

CL = Cw +
∑

jϵfanout(i)

Cg(Wj), Cg ∝ W (18)

where Cw corresponds to the total wire capacitance seen by the
gate and Cg corresponds to the input pin capacitances of the
fanout gates, and it is inversely proportional to the drain-source
Ids current of the driving transistors (Ids ∝ (W, 1/L, f(Vth)),
where f(Vth) is a strictly decreasing function for the Vth range
of interest) [13].

Under process variation, parameters that characterize the
electrical behavior (W,L, Vth) of the transistor deviate from
the nominal values, in some cases substantially, thus we have
to treat them as random variables distributed between a lower
and an upper bound, when analyzing circuit performance. A
sound assumption, made in other similar studies, about the
distribution of W , L and Vth is that are normally distributed
between ±3σ. So we consider W ϵ [W0−3∗σw,W0+3∗σw],
L ϵ [L0−3∗σL, L0+3∗σL] and Vth ϵ [Vth0−3∗σV th, Vth0+
3∗σV th] as normal random variables with mean values W0, L0
and Vth0 and standard deviation σw, σL and σV th respectively.

Therefore, when the effective width of a gate on a path
is increased, the driving current is increased and as a result
its delay is decreased. On the other hand, the delay of the
previous gate is increased, because it bears a higher load. Also,
σV th is inversely proportional to the square root of W and L
(∝ 1/

√
WL), according to Pelgrom’s rule [14]. So when L is

increased, σVth
and Ids are decreased, which indicate that the

delay of the gate increases and at the same time the worst case
delay condition coming from Vth (Vth0 + 3 ∗ σV th) becomes
smaller.

Note that similar arguments hold for the interconnects.
Interconnect capacitance and resistance are a function of
parameters that are determined by the interconnect structure
such as width, thickness and spacing, which in turn can be



considered as bounded random variables normally distributed.
For example, figure 3 in [5] highlights that the condition of
the maximum interconnect capacitance is opposite to that for
maximum resistance and RC constant, an observation that is
aligned to the previous discussion about transistor parameters.

Figure 1 shows the maximum delay of two inverters in a
row, taken from the memory decoder assumed by Cacti [15],
where σw1 = 5% and σw2 = 5% of minimum transistor size.
Notice that the maximum delay is somewhere between the
corners of W = {W1,W2}, and thus, cannot be determined
in advance. Even if the worst delay was located at the corners
of W space, the number of all possible process parameters
combinations grows exponentially with the circuit size.
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(b) The projection of a 3d scatter plot of two-inverters delays on W2 axis.

Fig. 1: The figure is a scatter plot of two-inverters delay de-
rived from a MC simulator with 10,000 different (W1, W2) pairs.
We denote the delays at W1, W2 corners with black squares.
Notice that there are a lot of points over the red-dotted line,
which indicates the maximum delay from the set of delays cor-
responding to (W1,W2) corners, namely {(W1min,W2min),
(W1min,W2max), (W1max,W2min), (W1max,W2max)}.

IV. PROPOSED METHODOLOGY FOR MAXIMUM DELAY
ESTIMATION

Following the discussion in the previous section, the prob-
lem focuses on finding the maximum (upper end point) of a
bounded random variable on the basis of a random sample.
This problem has been tackled successfully in [11] (for the
problem of maximum current estimation). In this section we
review the previous methodology and comment on how it can
be applied on the problem of maximum delay estimation. In
addition, we share some initial thoughts for further enhance-
ments of the previous methodology.

The first step of the methodology entails a MC simulation
of n trials to acquire the statistical sample of ATs at the
POs ATn = {AT1, AT2, . . . , ATn}, where each MC trial is
performed with a random P = {P1, P2, . . . , P#dp} sample
(Pi is assigned to the ith design parameter, which in turn
belongs to either a gate or interconnect) drawn from the

joint probability FP ∼ (P1, P2, . . . , P#dp). The second step
is to sort the units of the AT sample in ascending order and
pick those unit samples that exceed a threshold u (makes
the sample of exceedances Xex). The threshold u has to
be selected so that the sample of exceedances reside in the
tail of AT distribution. Therefore, the units of Xex have
to be as many as the parameters of GP pdf, which is the
limiting distribution of the sample of exceedances, can be
approximated perfectly. On the other hand, when a too small
threshold u is selected in order to include more sample units
of the initial AT sample, then there is the peril including in
Xex units that do not belong in the tail of AT distribution.
A rule of thumb is to set the threshold u so that the upper
10% of the initial AT sample is included to Xex. More
rigorous procedures for automatic selection of u can be
found in [16], [17]. Based on the sample Xex we calculate
the test statistic T in (16) and compare it with the critical
value of zα (for significance level α) to decide whether we
accept or reject the hypothesis ξ ↓. Experiments performed
on various random samples drawn from an Exponential
distribution have resulted to a critical value of zα ≃ 7 which
corresponds to significance level of α = 10−12 (detailed
proof of the previous result can be found in Appendix C of
[11]). Subsequently, if the hypothesis ξ ↓ is true we divide the
initial sample of AT into l blocks of size m sub-samples and
pick the the maximum unit from each sub-sample forming
the sample of maximas. Then, we calculate the ML estimates
σ̂ and µ̂ of the corresponding Gumbel parameters σ, µ as the
solution given from the maximization of (14) over the sample
of maximas and finally determine the maximum AT for the
previous estimates and provide the confidence interval for the
chosen confidence level 1− δ from (13) and (15) respectively.
On the other hand, if the results of test statistic T indicate
that we have to reject the hypothesis ξ ↓ (T ≥ 7), we find the
ML estimates σ̂ and β̂ of the corresponding Beta parameters
σ, β as the solution given from the maximization of (11)
over the sample of exceedances and finally we determine
the maximum AT for the previous estimates and provide the
confidence interval for the chosen confidence level 1− δ from
(10) and (12) respectively. Below we summarize the steps of
the methodology for maximum AT estimation we described
previously:

Step 1: Generate n P samples and assign them to the corre-
sponding gates or interconnects.

Step 2: Perform a MC simulation with n trials to acquire
the statistical sample of ATs at the POs ATn =
{AT1, AT2, . . . , ATn}.

Step 3: Sort the units of AT sample in ascending order and
pick the units that are over a threshold u (sample of
exceedances).

Step 4: Evaluate the test statistic T in (16) for the sample of
exceedance acquired in the previous step.

Step 5: if (T < 7):
Step 5.a: Derive the sample of maximas from the

sample of ATs.
Step 5.b: Estimate the Gumbel parameters by maxi-

mizing (14) over the sample of maximas.
Step 5.c: Determine the maximum AT estimate from

(13) and the confidence interval for the
chosen confidence level 1− δ from (15).

Step 6: if (T ≥ 7):
Step 6.a: Estimate the Beta parameters by maximiz-

ing (14) over the sample of exceedances.
Step 6.b: Determine the maximum AT estimate from

(10) and the confidence interval for the
chosen confidence level 1− δ from (12).



A. Enhancements to the Proposed Methodology
The previous methodology can be enhanced with machine

learning techniques to determine the size n of MC simulations,
which dominantly affects the time complexity of the method-
ology, as well as the threshold u. For example we can acquire
the sample of exceedances at step 3 exploiting the Statistical
Blockade algorithm presented in [18]. Statistical Blockade
builds a classifier based on an initial input variables training
set of size n0 << n (in our methodology the P sample) and
a sample of the corresponding metric of interest (in our case
the AT sample), derived after the simulation of the underlying
system (in our case SSTA), to test whether a unit sample of
the metric we are interested in, would fall in the tail of the
parent distribution for every new unit sample of input variables
(P), beyond the first n0 samples, before doing a simulation.
By doing so, for a good classifier, we acquire a sample of
exceedances that falls in the tail of the parent distribution with
greater probability than simply selecting the upper 10% of
the initial AT sample, thus speeding up the methodology and
improving the accuracy simultaneously. Notice that if ξ ↓ is the
case, then we cannot rely on the sample of exceedances. For
this reason we keep a track of the rejected Ps by the Statistical
Blockade algorithm, run the missing simulations and follow
subsequently the rest of the steps corresponding to case ξ ↓.
Again, because we will have rejected many more P samples
than those leading to AT samples in the tail, we will have both
greater accuracy and speedup, as n becomes a function of u.

V. EXPERIMENTAL RESULTS

For the experimental evaluation we developed an SSTA tool
in C++, based on MC simulations, to gather the statistical
sample of ATs at different POs. Our SSTA tool embeds
models that allow us to variate only the effective transistor
width of a gate (W). However, that does not prevent us
from deriving sound conclusions about the effectiveness of the
proposed methodology, as the methodology does not depend
on the number of design parameters that affect timing but on
the statistical sample at the outputs. For timing verification
where the worst slack is required, the extension is trivial by
substituting the ATs sample in the proposed methodology with
the SLACKs sample, as the i.i.d assumption we make for
the sample is not violated. We applied our methodology on a
subset of ISCAS85/89 [19][20] benchmarks implemented at a
90nm technology node. For the evaluation we used a 3.60GHz
Intel Core i7-4790 CPU with 16 GB memory system running
UNIX. Below we summarize the steps we followed to run the
experiments.

• We run SSTA with n trials to obtain the statistical sample
of ATs at each PO (ATk = {ATk,1, ATk,2, . . . , ATk,n},
where k denotes the k-th PO) of the circuit under test.

• We apply steps from 3 to 6 of our methodology on ATk to
get an estimate of max ATk ( ˆATk) and the corresponding
confidence interval | ˆATk −ATk |.

• Finally, we evaluate the current relative error
(
η =

| ˆATk −ATk |
ˆATk

)
of the the worst ATk estimate.

• If η is below a predefined target relative error (ηtarget =
5%), we acquire more samples from the SSTA tool and
re-apply our methodology until the desired accuracy is
achieved.

The generation of W#gates samples in Step 1 of our
methodology can be done very fast by randomly picking a
corner Wk for each gate. The accuracy of the estimated ATs in
Step 2 is entirely up to the timing analysis tool and varies from
SPICE to gate-level. Also, the computational time required to
complete Step 2 depends on the efficiency of the timing engine

employed. However, the runtime of Steps 3-6 is very small
compared to the runtime of MC simulation, and thus, one can
re-arrange each sample ATk into sub-samples of various sizes
in order to obtain better estimates.

The results from the execution of the above steps, in the
case of three sequential (s27, s35932, s38417) and three
combinational (c17, c6288, c7552) designs, are reported be-
low. In this experiment, each MC trial is performed with a
random W#gates = {W1,W2, . . . ,W#gates} sample, where
each W is normally distributed between ±3σ. Table I shows
the maximum of AT sample and the estimated ÂT at selected
POs, for each circuit under consideration, when the target
relative estimation error is within 5% for 99% confidence level.
Additionally, it reports the AT sample size and the achieved
relative estimation error η.

It is worth pointing out that the random samples required
to meet this relative estimation error for POs that belong on
paths of higher impedance interconnects are slightly increased.
Such circuits include clock network interconnects that are
rooted on the upper level metal layers where the resistance is
lower. Resulting sample sizes for the above benchmarks, im-
plemented using both high and low impedance interconnects,
are presented in Table II. In the former case a SPEF file is
extracted, while in the latter case a zero wire delay model is
assumed. Note that in both cases estimated AT at the POs are
within 5% of the true maximum AT at a cost of a few thousand
MC simulations.

TABLE I: Required sample/sub-sample sizes, sample and estimated
maximum AT on a subset of POs when relative estimation error is
within 5% for 99% confidence level.

Circuit Primary
Output

Sample
Size

Sub-
Sample

Size

Sample
max
(ns)

Estim.
max
(ns)

Relative
Error
(%)

s27 G17 2500 25 0.265 0.270 0.47

s35932 DATA_9_0 5000 25 0.513 0.694 4.25
DATA_9_19 5000 25 0.518 0.702 4.26

s38417 g16297 2500 50 0.132 0.146 2.99
g25420 10000 25 0.470 0.820 0.75

c17 N22 2500 25 0.053 0.054 0.44
N23 2500 25 0.051 0.052 0.07

c6288 N5971 10000 25 2.304 2.691 1.62
N6280 5000 25 3.428 3.940 2.11

c7552 N10718 5000 25 0.917 0.940 0.42
N10729 5000 25 0.671 0.809 2.73

TABLE II: Sample size required in order to achieve 5% relative
estimation error for 99% confidence level. Higher impedance inter-
connects require more MC simulations.

Circuit Sample Size (with
interconnect

Sample Size (w/o
interconnect)

s27 2500 2500
s35932 5000 2500
s38417 10000 2500

c17 2500 2500
c6288 10000 5000
c7552 5000 5000

To evaluate the efficiency of our statistical method, we
compare it against an exhaustive MC simulation, which corre-
sponds to the slowest but full accurate version of corner-based
analysis (a.k.a. full factorial design), for a test benchmark.
On the exhaustive approach we have to simulate all the
combinations of gate widths, while when we apply our method
we choose n random samples of them. If we allow W to take
a value within a continuous range, then the number of all
combinations is not bounded. For this reason, each gate width
W is set on its {−3σ,+3σ} corner. As a result, the max AT
derived from the exhaustive MC simulation is a lower bound
of the actual max AT, and thus, the reported relative error is
an upper bound of the actual one.

In order to perform this experiment, we pick a design
with 30 gates where the exhaustive MC can be feasible since
even for small designs of 100 gates the runtime would be
tremendous (2100 MC trials). Due to the lack of availability



of such a well-known circuit, we implemented a synthetic
benchmark, based on the ISCAS c432 benchmark, which
consists of 30 gates.

We first demonstrate the accuracy of our methodology and
report the relative estimation error on a single selected PO
(N223) of the test design. In Table III, we present how our
methodology approaches the theoretical max AT at N223.
From the table, we can clearly observe that the more samples
we pick to apply our method on, the better estimation and
relative error is achieved.

Note that the reported relative error stands for the upper
bound of the computed confidence interval, thus for a worst-
case timing analysis we have to add this error to the estimated
maximum AT at the PO.

TABLE III: Relative error on N223 for different sample/sub-sample
sizes and confidence level 99%.

Sample
Size

Sub-
Sample

size

Sample
max
(ns)

EVT
max
(ns)

Relative
Error
(%)

2500 50 0.16784 0.16997 0.540
5000 25 0.16833 0.16987 0.289
10000 50 0.16811 0.16956 0.235
20000 50 0.16814 0.16818 0.049
50000 25 0.16814 0.16972 0.088
100K 25 0.16848 0.16971 0.062
1M 50 0.16848 0.16890 0.016
10M 50 0.16848 0.16953 0.007

100M 25 0.16848 0.17068 0.002

Figure 2 depicts the probability distribution at node N223
after 10 million MC simulations. The following distribution is
a representative one of all POs in all benchmarks we tested and
corresponds to the case ξ ↓ in the proposed methodology. Also,
following the previous observation, another point to mention
is that in all experiments we find that a number of 50 sub-
samples, in block maxima modelling, yields estimates with
relative error of about 5% (at a confidence level of 99%) for
any PO irrespective of its level.
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Fig. 2: Probability Distribution of the AT on N223 after MC simu-
lation of 10M trials.

The runtime efficiency of the proposed method is reported
in table IV . For this comparison we execute the previous
experiment for N223 and measure the runtime.We conclude
that compared to an exhaustive MC simulation, our method
achieves up to six orders of magnitude (x233426) better
performance. In the case targeting a 5% relative estimation
error for all POs, given that experimental results on ISCAS
show that we need a maximum of 10000 samples (Table II),
the proposed method can be about five orders of magnitude
(x58355) faster than an exhaustive MC.

VI. CONCLUSION

In this paper we present a novel statistical methodology
based on EVT, as a substitute of the conventional corner-based
analysis, which can provide accurate estimates of the worst

TABLE IV: Runtime comparison between the proposed methodology
and an exhaustive MC simulation.

Sample
Size

Our
Method
Runtime

(sec)

Exhaustive
MC

Runtime
(sec)

Speedup

2500 0.062 14472 x233420
5000 0.124 14472 x116710
10000 0.248 14472 x58355
20000 0.496 14472 x29177
50000 1.239 14472 x11680
100K 2.479 14472 x5838
1M 24.898 14472 x582

10M 248.527 14472 x59
100M 2478.140 14472 x5.85

ATs at the POs taking into account process variation. Our
methodology does not make any assumptions about the gate
or interconnect timing model or the distribution of AT at the
POs, and thus, can be used from gate to transistor level of
abstraction in timing verification. Experimental results showed
that we can achieve a relative error between the true maximum
and the estimated maximum that is below 5% with just a few
Monte Carlo simulations.
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