
A Sparsity-Aware MOR Methodology for Fast and
Accurate Timing Analysis of VLSI Interconnects

Dimitrios Garyfallou, Charalampos Antoniadis, Nestor Evmorfopoulos and Georgios Stamoulis
Department of Electrical and Computer Engineering, University of Thessaly, Volos, Greece

Email: {digaryfa, haadonia, nestevmo, georges}@e-ce.uth.gr

Abstract—Signoff timing analysis is essential in order to verify
the proper operation of VLSI circuits. As process technologies
scale down towards nanometer regimes, the fast and accurate
timing analysis of interconnects has become crucial, since in-
terconnect delay represents an increasingly dominant portion of
the overall circuit delay. It is a common view that traditional
SPICE transient simulation of very large interconnect models
is not feasible for full-chip timing analysis, while static Elmore-
based methods can be inaccurate by orders of magnitude. Model
Order Reduction (MOR) techniques are typically employed to
provide a good compromise between accuracy and performance.
However, all established MOR techniques result in dense system
matrices that render their simulation impractical. To this end,
in this paper we propose a sparsity-aware MOR methodology
for the timing analysis of complex interconnects. Experimental
results demonstrate that the proposed method achieves up to 30x
simulation time speedups over SPICE transient simulation of the
initial model, maintaining a reasonable typical accuracy of 4%.

Index Terms—Circuit Simulation, MOR, Timing Analysis,
Interconnect

I. INTRODUCTION

Timing closure is the major milestone which dictates when
a chip can be released to the semiconductor foundry for
fabrication. As a consequence, static and dynamic timing
analysis (STA/DTA) are critical parts of the design flow. There
are two components in the signal path delays, which are the
gate delay and the interconnect delay. In nanometer process
technologies, interconnect delay has become the decisive fac-
tor of performance, since it contributes almost 70% of the total
delay [1]. This is due to the increased interconnect average
length and routing density, and the fact that interconnect ca-
pacitance dominates gate capacitance. Thus, we cannot neglect
the effects of interconnect parasitics in timing analysis.

Accuracy is the main consideration in signoff timing analy-
sis. It is well known that existing fast delay estimation method-
ologies based on Elmore delay model [2] are inadequate for
signoff timing analysis of interconnects, since they rely on
simplistic assumptions that are invalid in deep submicron
technologies. Another important aspect of timing analysis is
the efficiency of the interconnect delay estimation method.
Traditional transient analysis using SPICE-like simulators of-
fers golden accuracy results, but fails to meet the performance
and memory requirements for full-chip analysis of current
designs which include very large interconnects.

Model Order Reduction (MOR) techniques have been em-
ployed to provide a good compromise between accuracy
and performance. MOR techniques substitute the large scale
parasitic network with a model of lower order with similar

response at the input/output ports. However, all established
MOR methodologies [3] [4] [5] result in dense system matrices
that render their simulation impractical, since the simulation
cost can easily overshadow the benefits obtained from dimen-
sion reduction. Previous methods attempting to address the
problem of dense matrices resulting from MOR [6] [7] [8] do
not produce very sparse and accurate models, or they rely on
heuristics and circuit specific criteria. A rigorous mathematical
approach for the sparsification of dense MOR circuit matrices
was proposed only recently in [9]. The aforementioned method
employs a sequence of algorithms based on the computation of
the nearest Laplacian matrix and the subsequent sparsification
of the corresponding graph.

In this paper, we present a sparsity-aware MOR method-
ology, based on [9], for the efficient signoff timing analysis
of VLSI interconnects. When the proposed methodology is
incorporated in iterative optimization flows, the convergence
rate of the optimization can be improved due to the more
accurate estimation of the critical paths [10]. On top of that,
it can be embedded in a framework like [11] for the timing
analysis of large interconnects with many ports (denoted
hereafter as complex interconnects). In addition, the sparsified
reduced order models have a straightforward realization to
equivalent interconnect networks that can be dumped into a
more compact Standard Parasitic Exchange Format (SPEF) file
and be used in industrial design flows.

The rest of the paper is organized as follows. Section
II provides some background material on the interconnect
modelling and delay estimation methods. Section III presents
the proposed sparsity-aware MOR methodology for the tim-
ing analysis of complex interconnects. In Section IV, we
demonstrate the performance and accuracy of the proposed
methodology. Finally, Section V concludes the paper.

II. ON THE INTERCONNECT DELAY ESTIMATION

A. Electrical Modelling of an IC Interconnect

In digital designs, a wire connecting pins of gates (standard
cells in EDA terminology) is referred to as an interconnect. An
interconnect typically has only one driver (input port), while it
can drive a number of fanout cells (output ports). For equiv-
alent electrical representation, IC interconnects are typically
represented by RC networks. For complex large interconnects
driving a big number of cells, an accurate representation can
be obtained by breaking its total capacitance Ctotal and total
resistance Rtotal into multiple sections, creating a distributed
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Fig. 1: A distributed RC interconnect of a gate driving a fanout
of two cells.

RC-tree model as shown in Fig. 1. Such RC networks of
current VLSI circuits may contain up to hundreds of thousands
internal nodes, and thousands of output ports. Typically, the
effect of inductance can be ignored within the chip and is only
considered for package and board level analysis.

B. Interconnect Delay Estimation Methods

Elmore Delay Model is the most widely known static
interconnect delay estimation method. For a distributed RC-
tree (like the interconnect shown in Fig. 1), Elmore delay T0→i
from the input port 0 to the output port i can be given by:

T0→i =
∑
k∈N

RkiCk

where N is the set of all nodes in the RC network, Ck is the
lumped capacitance at node k, and Rki represents the total
resistance of the common path between the paths from input
port 0 to node k and from input port 0 to output port i.

Although Elmore delay model is simple and fast to evaluate
(linear time complexity with respect to the interconnect size),
it considers only a step input ignoring effects that are input
slew dependent. It is well established that this model can be
off by orders of magnitude in some cases.

SPICE Transient Analysis of Initial Interconnect Model
is the most accurate but time-consuming approach for output
waveform calculation and delay estimation. Using the voltage
waveform at the input port of the interconnect, which is com-
puted during timing analysis of the previous gate, the voltage
waveform on each output port can be obtained by SPICE
transient analysis of the RC model. Given these waveforms,
the corresponding delay is computed as the difference between
the time instants when the output and input voltage crosses the
50% of the supply voltage.

Let the RC model of an interconnect be composed of n
total nodes (excluding ground), where p nodes correspond
to input and output ports. Given the excitation source vector
of the circuit, the node voltages can be obtained by solving
the following system of ordinary differential equations, arising
after the Modified Nodal Analysis (MNA) [12]:

Gx(t) + C
dx(t)

dt
= u(t) (1)

where G ∈ <n×n and C ∈ <n×n are the node conductance
and capacitance matrices, x ∈ <n is the vector of unknown
node voltages, and u ∈ <p is the vector of excitations from

independent sources at the input ports. Note that the vector of
excitations u(t) has only one non-zero entry, corresponding to
the node where the independent current source is connected
to, because the model of interconnects, as we described in the
previous subsection, includes only one input port.

For the transient analysis, we can use the Backward-Euler
numerical integration method to obtain a system of linear
algebraic equations to be solved at any time instant [12].
Several efficient solution methods and preconditioning tech-
niques have been proposed in the literature for solving such
linear systems [13]. However, even such efficient simulation
techniques cannot provide the performance required in timing
analysis of large interconnects.

Model Order Reduction techniques have been employed
in the past, as an alternative to the time-consuming SPICE
transient analysis of the initial RC interconnect model of (1).
MOR aims at approximating the initial model by another
model of reduced order r << n, such that the input-output
behavior is preserved. The MOR approximation is performed
through a process of projecting the system matrices onto
lower-dimensional subspaces by suitable projection matrices
U, V ∈ <n×r:

Ĝ = UTGV, Ĉ = UTCV

The biggest problem from the projections inherent in MOR
is that sparsity of the matrices is lost, which can render
impractical any time or frequency domain simulation and
offsets the benefits from order reduction.

III. PROPOSED SPARSITY-AWARE MOR METHODOLOGY

A. Laplacian matrices

Laplacian matrices play a central role in the proposed
methodology. Therefore, prior to the description of our
methodology, we provide a definition of the Laplacian matrix.
Definition 1: Let G = (V,E,w, d) be a weighted undirected
graph on the vertex set V = {1, 2, . . . , n} with no self-loops,
and with weight functions w : E → <>0 and d : V → <≥0.
The Laplacian of G is the matrix GL ∈ <n×n such that:

GL(i, j) =


d(i) +

∑
(i,k)∈E |w(i, k)| , if i = j

−w(i, j) , if (i, j) ∈ E
0 , otherwise

(2)

Thus, any Laplacian matrix corresponds to a graph and vice
versa.

B. Proposed Methodology

An intriguing methodology for the sparsification of dense
matrices in MOR has been recently proposed in [9] (see Alg.
1). This methodology, firstly computes the nearest Laplacian
matrices (step 1) to the Reduced Order Model (ROM) (Ĝ, Ĉ),
let GL, CL, and then sparsifies those Laplacians by exploiting
efficient spectral graph techniques, so that to preserve the
eigenvalues of GL, CL in between given error bounds.

The projection to the nearest Laplacian matrices at step
2 (depending on the chosen MOR technique) may induce



Algorithm 1 Sparsification of dense models resulting in MOR

1: function Ĝsp, Ĉsp = MORSPARSE(Ĝ, Ĉ)
2: [GL, CL] = Compute the nearest Laplacian matrices

to Ĝn, Ĉn (steps 2-5 in Algorithm 6 [9]).
3: [Ĝsp, Ĉsp] = Sparsify GL, CL (step 6 in Algorithm

6 [9])
4: end function

unacceptable error in the sparse ROM, especially when the
number of port nodes is large. A MOR technique that produces
model matrices (of a system with many ports that are) close
enough to Laplacians is PACT [4].

PACT preserves the dominant poles of the initial model
admittance matrix in the ROM admittance matrix, given an
error control parameter and a frequency band of operation, by
applying a series of matrix transformations.

Before applying the matrix transformations, PACT rear-
ranges the equations of (1) so that the first p equations
correspond to port nodes, while the rest of them correspond
to internal nodes. Thus, (1) can be re-written as:

[
GP GT

C

GC GI

] [
xP (t)
xI(t)

]
+

[
CP CT

C

CC CI

] [dxP (t)
dt

dxI(t)
dt

]
= u(t) (3)

where xP and xI represent the p port nodes and the i internal
node voltages respectively, GP and CP ∈ <p×p represent the
interconnections between the port nodes, GI and CI ∈ <i×p
describe the interconnections between the internal nodes and
GC and CC ∈ <p×i represent the interconnections between
the port nodes and the internal nodes. After the rearrangement
of equations, PACT transforms G, C in (3) as follows:

G
′
= XTGX =

[
GP −GT

CA 0
0 Ii

]
=

[
G

′

P 0
0 Ii

]

C
′
= XTCX =

[
CP −BTA−ATCC BTL−TU

UTL−1B Λ

]
=

[
C

′

P C
′T
C

C
′

C Λ

] (4)

with

X =

[
Ip 0
−A LTU

]
where A = G−1GC , B = CC−CIA, L is the lower triangu-
lar matrix from the Cholesky factorization of GI (GI = LLT )
and U and Λ are the matrices with the eigenvectors as columns
and a diagonal matrix with the eigenvalues from the eigende-
composition of matrix C

′

I = L−1CIL
−T (C

′

I = UΛUT ),
respectively.

Notice, that both internal matrices of (4) (the i × i lower
right submatrices of G

′
and C

′
) are diagonal, and thus the

admittance matrix Y(s) of (3), which can be derived by
obtaining the Laplace transform (Y(s)x(s) = Bu(s)) and
then eliminating xI from the first p equations, is written as:

Y(s) = G
′

P + sC
′

P −
s2rT1 r1
1 + sλ1

− . . .− s2rTnrn
1 + sλn

(5)

where ri is the ith row of C
′

C and λi is the ith diagonal of
Λ. Now, it is also shown in [4] that if the terms associated
with λi in (5) are dropped when λi < λc, the relative error
of each of the individual element of Y(s) is bounded on the
complex axis for |ω| ≤ ωc by ε ≤ εc if :

εc = ωcλc + ω3
cλ

3
c (6)

Finally, the ROM is built by eliminating the rows and columns
of G

′
and C

′
for which the corresponding diagonal of Λ is

less than λc or equivalently only the fractional terms in (5)
that contribute a pole closer than − 1

λc
to the imaginary axis

are kept in Y(s). The value of λc is determined by inserting
the user-specified error εc and maximum frequency ωc in (6).

Looking at the model in (4), it is apparent that matrix G
′

is of the Laplacian kind because it is consisted of the Schur
complement of matrix G, which is Laplacian itself, and the
identity matrix. Therefore, it is not required to approximate
G

′
with its nearest Laplacian matrix and as result the error

induced due to that approximation can be avoided.

IV. EXPERIMENTAL EVALUATION

For the evaluation of the proposed methodology, we devel-
oped an in-house gate-level STA tool in C/C++. Our timing
analysis tool implements the Synopsys Composite Current
Source (CCS) model for the gate timing analysis. CCS model
offers an acceptable trade-off between time to compute and
signoff accuracy in voltage waveform estimation at the gate
output. The estimated voltage waveform is then used for the
timing analysis of the driving interconnect.

Given the interconnect parasitics netlist, we built the matri-
ces of the initial model shown in (1). Since (1) assumes that an
independent current source is connected to the input port, we
transformed the CCS voltage waveform which is in series with
the first resistor of the interconnect, to the equivalent current
source parallel to the resistor. At the next step, by applying
the PACT MOR and subsequent sparification, we generated
the PACT and MORSparse ROMs. Note that for all examined
benchmarks, we selected ωc = 5GHz and εc = 5% in (6),
which resulted in obtaining the upper left p × p submatrices
(G

′

P , C
′

P ) of the reduced matrices in (4).
In order to evaluate the accuracy and runtime of inter-

connect timing analysis using MORSparse, we implemented
the Elmore delay model and a SPICE transient analysis for
the simulation of the initial/full model and the PACT and
MORSparse ROMs. Our SPICE simulator was verified against
Synopsys HSPICE. For the solution of the linear systems and
the rest of linear algebra operations, we used the Eigen library
[14]. We tested the proposed methodology on the ISPD-2012
[15] benchmarks implemented in 45nm process technology,
while we executed all experiments on a Linux workstation with
an Intel 3.50GHz 8-core Xeon processor and 16GB memory.

To estimate the interconnect delays, we ran our STA tool
using Elmore delay method and SPICE simulation of the initial



TABLE I: Comparison of ROM sparsity, simulation runtime and delay estimation accuracy between dense ROMs obtained
from PACT and sparse ROMs obtained from MORSparse, with respect to full-SPICE simulation of the initial model

Bench. #nodes #ports

Model
Sparsity Runtime Accuracy

PACT MORSp. Full-SPICE
(ms)

PACT
(ms)

MORsp.
(ms)

PACT vs
Full-SPICE

Speedup

MORSp. vs
Full-SPICE

Speedup

Elmore Delay
MRE

PACT
MRE

MORSp.
MRE

vga lcd 2788 264 52.9% 99.2% 901 44.1 29.1 20.4X 30.9X 264 % 5.5e-3 % 1.5 %
netcard 1827 261 0% 96.6% 381 250.3 100.2 1.52X 3.8X 174 % 1.2e-1 % 4.3 %

mem ctrl 1677 294 41.5% 98.8% 221 49.5 23.2 4.5X 9.5X 288 % 2.7e-3 % 1.8 %
leon2 1685 247 1.6% 98.3% 653 391 122 1.67X 5.4X 135 % 7.5e-2 % 6.8 %

leon3mp 3345 501 21.1% 97.9% 696 96.2 100.5 7.7X 6.9X 180 % 3.7e-2 % 7.2 %
b19 2050 309 0.6% 96.5% 1073 96.1 165 11.1X 6.5X 135 % 1.4e-1 % 3.6 %

model (full-SPICE), PACT ROM and MORSparse ROM. For
the purpose of demonstration, we selected one interconnect
from each benchmark. Table I reports the corresponding sim-
ulation runtime, delay estimation Mean Relative Error (MRE)
among all output ports, with respect to full-SPICE simulation,
as well as the sparsity ratio ( zeros(Ĝ+Ĉ)

rows(Ĝ+Ĉ)×cols(Ĝ+Ĉ)
) of the

PACT and MORSparse ROMs. We can observe that a sparsity
ratio over 96.5% is achieved for the MORSparse ROM,
which leads to runtime speedups up to 30X over full-SPICE
simulation and up to 3.2X over PACT ROM SPICE simulation.
The runtime of Elmore delay estimation is not reported since
the delay can be computed once (before STA) and be retrieved
directly during STA. Note that although those benchmarks do
not include coupling capacitances since Elmore cannot deal
with crosstalk, MORSparse is expected to provide even greater
speedups for such cases, as the related models are much bigger.

The accuracy results reported in Table I indicate that our
methodology provides an accurate approximation of the inter-
connect delay, with a typical MRE of 4%, when Elmore delay
could deviate up to 280%. The output waveforms obtained
from the SPICE simulation of the initial model and the
MORSparse ROM are given in Fig. 2. It is apparent that the
differences between the two waveforms are negligible.
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Fig. 2: Voltage response at the port inst 41217:A1 of vga lcd.

V. CONCLUSION

This paper presents a fast and accurate methodology for the
timing analysis of VLSI interconnects. The proposed method-
ology is based on a sparsity-preserving model order reduction
algorithm to obtain sparse models of the interconnects to be
simulated. When incorporated in a timing analysis tool, it can
provide signoff accuracy results and accelerate interconnect
simulation runtimes by orders of magnitude. Experimental re-
sults on complex interconnects of the ISPD-2012 benchmarks,

showed that our methodology introduces a negligible typical
error of 4%, while achieving runtime speedups up to 30X
over SPICE simulation of the initial model and up to 3.2X
over SPICE simulation of the dense PACT ROM.
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