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Abstract—Efficient large scale circuit simulation is among
the most challenging problems facing the EDA industry today,
since it is the only feasible way to verify a circuit's behaviour
prior to manufacturing. In recent years, the emphasis has been
placed on preconditioning methods which reduce the number
of iterations for solving large Symmetric Diagonally Dominant
systems resulting after the Modified Nodal Analysis. This paper
presents a GPU-accelerated Preconditioned Conjugate Gradient
(PCG) iterative method preconditioned by the Combinatorial
Multigrid (CMG) for fast DC and transient analysis of large-scale
linear circuits. Experimental results on IBM industrial power
grids demonstrate speedups up to 4.69x and 4.50x for the PCG
method and the CMG preconditioning algorithm, respectively,
over the optimized CPU implementations.

I. INTRODUCTION

Circuit simulation is indispensable for the design and verifi-
cation of a broad range of large-scale integrated circuits (ICs)
and electrical models such as power distribution networks,
clock networks, or multiconductor buses. The most challeng-
ing problem is the simulation of the on-chip power delivery
network as it is truly gigantic and constitutes a vital subsystem
of modern nano-scale ICs which affects in a critical way the
performance and correct operation of the device.

Static (DC) or transient analysis refers to the process of
computing the response of an electrical circuit to a constant
or time-varying stimulus. Since an electrical circuit can be
generally modelled as a linear RLC network, this process
requires the solution of very large and sparse linear systems of
equations derived from Modified Nodal Analysis (MNA) [1].
Direct methods have been widely used in the past for solving
the resulting linear systems, mainly because of their robustness
in most types of problems. Unfortunately, these methods do
not scale well with the dimension of the system, and become
prohibitively expensive for circuits beyond a few thousand
nodes, in both execution time and memory requirements.

On the other hand, iterative methods such as the Precon-
ditioned Conjugate Gradient (PCG) involve only inner and
matrix-vector products, and constitute a better alternative for
huge linear systems, being more computationally and memory
efficient. The main problem of iterative methods is their un-
predictable convergence rate which depends on the properties
of the system matrix. A preconditioning mechanism, which
transforms the system into one with more favorable properties,
is essential to guarantee fast and robust convergence.

An aspect of circuit simulation that has become very im-
portant recently is the acceleration of the solution method by
harnessing massively parallel architectures, such as graphics
processing units (GPUs) and multi-core processors. GPUs,

in particular, provide an enormous computational power and
as a result are preferred for computationally-intensive tasks.
However, the direct solution methods that have been mostly
employed in circuit simulation thus far are very difficult
to parallelize, due to many sequential dependencies in the
factorization process as well as in the forward and backward
solves of the resulting triangular systems [2]. On the contrary,
Krylov-subspace iterative methods offer ample possibilities for
parallelism that have been explored sufficiently well.

Preconditioning of iterative methods for power grid analysis
was originally proposed in [3], but the preconditioner used
is the general-purpose incomplete Cholesky. A Generalized
Minimal Residual (GMRES) solver preconditioned by the
incomplete LU preconditioner is proposed by Liu et al. [4].
However, the GMRES solver does not take advantage of
the symmetry and positive definiteness of the system, thus
increasing the computational cost. The authors in [5] propose
two parallel fast transform-based preconditioners for 2D and
3D power grids. The idea of preconditioning by Multigrid
techniques is proposed in [6]. An alternative approach is
preconditioning by hierarchical support graphs [7], which sig-
nificantly accelerates the convergence rate of iterative methods
for graph-based problems. Preconditioning has also been used
for power systems and power flow problems. The authors in [8]
propose preconditioners based on multifrontal direct methods,
while Algebraic Multigrid preconditioners are proposed for
Newton-Krylov power flow methods in [9].

In this work, we present a GPU-accelerated PCG solver
preconditioned by the Combinatorial Multigrid (CMG) [10],
an efficient algorithm for solving Symmetric Diagonally Dom-
inant (SDD) systems, for DC and transient analysis of large
scale circuits. The rest of the paper is organized as follows.
The next section provides some background material on the
MNA modeling and the PCG iterative method, while Section
III presents the CMG algorithm. In Section IV, we describe our
hybrid CPU/GPU circuit simulation method. We demonstrate
the performance gains of our approach on the IBM power grid
designs in Section V. Finally, Section VI concludes the paper.

II. THEORETICAL BACKGROUND

A. MNA Modelling and DC Analysis
Every large scale linear circuit can be modelled as an RLC

network which may contain several million nodes, and up
to hundreds of thousands of input current sources. Let the
electrical model of the circuit be composed of N nodes and
n inductive branches. Given the current source vector as the
excitation of the circuit, the node voltages can be obtained by
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solving the following ordinary differential equation, obtained
using the Modified Nodal Analysis (MNA):

G̃x(t) + C̃
x(t)
dt

= b(t) (1)

where G̃ =

[
G AL

−AT
L 0

]
, C̃ =

[
C 0
0 L

]
, x(t) =

[
v(t)
i(t)

]
, b(t) =

[
e(t)

0

]
.

In the above system, G and C are the N×N node conductance
and node capacitance matrices, L is the n×n dense inductance
matrix, and AL is the corresponding N × n node-to-branch
incidence matrix. Also, v(t) and i(t) are the N × 1 and n× 1
vectors of node voltages and inductive branch currents, while
e(t) is the N × 1 vector of excitations from independent
sources at the nodes.

For the transient analysis, we can use the Backward-Euler
numerical integration method to obtain the system of linear
algebraic equations to be solved. In both DC and transient
analysis, the system matrix can be shown to be SDD and
efficient methods such as the Conjugate Gradient (CG) can be
employed for its solution as describen in [3]-[7]. Although our
work can be easily applied to transient analysis, in this paper
we demonstrate our implementation for DC analysis. On the
DC operation point, the system of differential equations (1) is
reduced to the following algebraic linear system:

G̃x = b (2)

B. Iterative Solution Methods and Preconditioning
Iterative solution methods are very attractive for solving

sparse Symmetric Positive Definite (SPD) systems. Especially,
CG is an extremely effective algorithm since it only requires
two inner products, three saxpy (y =ax+ y) operations, one
Sparse Matrix-Vector (SpMV) multiplication and a limited
amount of storage (A + 6n, where A is the system matrix
and n denotes the order of the matrix). It also scales well with
the dimension of the system and offers ample possibilities for
parallelizeation on GPUs.

However, the convergence rate of CG is not predictable up
front. It is well known that the method suffers from slow
convergence rate when the condition number of A is large,
which is defined as κ(A) = λmax(A)

λmin(A) , where λmax(A) and
λmin(A) are the maximum and minimum eigenvalues of A,
respectively. To improve the convergence speed, it is neces-
sary to apply a preconditioning mechanism which transforms
the initial linear system into an equivalent one with more
favourable spectral condition number. Algorithm 1 describes
the PCG method for the solution of an SPD linear system
Ax = b. The preconditioner solve step Mz = r effectively
modifies the CG algorithm to solve the system M−1Ax =
M−1b, which has the same solution as the original system
and exhibits condition number κ(M−1A) ' κ(I) = 1, when
the preconditioner M approximates A in some way.

III. THE COMBINATORIAL MULTIGRID ALGORITHM

One of the fastest solution methods for linear systems is
Multigrid (MG) [11]. The idea of MG is to transform the
initial system into a bigger hierarchical system consisting of
different resolutions of the same problem. In particular, based
on the system matrix A, it generates a hierarchy of grids M =

Algorithm 1 Preconditioned Conjugate Gradient
1: x = initial guess x(0)

2: r = b − Ax
3: iter = 0
4: while not converged do
5: iter = iter + 1
6: Solve Mz = r (Preconditioner Solve Step)
7: ρ = r · z
8: if iter == 1 then
9: p = z

10: else
11: β = ρ/ρ1
12: p = z + βp
13: end if
14: ρ1 = ρ
15: q = Ap
16: α = ρ/(p · q)
17: x = x + αp
18: r = r − αq
19: end while

{M0, . . . ,Md} that look similar but in a different level of
detail. The main classes of MG are the Algebraic Multigrid
(AMG) and the Geometric Multigrid (GMG). The first one
constructs the “coarse” grids/matrices based on their algebraic
informations, while the latter one uses a discretization process.

Recent research led to a fast algorithm (O(m log n) in
theory with an O(n) implementation, where n is the matrix
dimension and m the non-zero elements) for solving SDD
linear systems [10]. CMG is an hybrid MG algorithm, based
on principles borrowed from both GMG and AMG, which can
be used as a solver and/or a preconditioner. The construction
of this preconditioner is driven by graph-theory and the well
known correspondence between graphs and Laplacians. The
Laplacian A of a graph G = (V,E,w) with positive weights
is defined by:

Aij =

{
deg(v(i)) , if i = j

−wij , if i 6= j
(3)

where V denotes the vertices, E the edges, w the weights and
deg(v(i)) is the degree of v(i). CMG constructs a hierarchy
of graphs/matrices and recursively solves the coarser problem.
It can be described by the two following steps:
1) [Construction of the Steiner preconditioner hierarchy]

CMG uses a graph sparsification algorithm in order to
decompose the Laplacian of system matrix A into disjoint
clusters and form the MG preconditioner. For each cluster
Vi, it adds an extra node pi and creates the corresponding
Steiner preconditioner Si, as a star graph rooted at pi
with leaves corresponding to the vertices in Vi. A quotient
matrix/graph Q, which represents the connections of the
roots pi, is formed for every Steiner preconditioner. The
algorithm is applied iteratively on the Laplacian of Q to
construct the hierarchy of preconditioning grids.

2) [Combinatorial Multigrid Solution Algorithm]
The main idea of CMG is to add a correction RT

i Q
−1
i+1Riri

to the iterate xi of the MG level i, where ri = bi −Aixi
is the smooth residual error, Qi+1 is the smaller quotient
graph and Ri ∈ Rdim(Ai)×dim(Ai+1) is a restriction opera-
tor. The intuition is that for smooth residuals, the low-rank
matrix RT

i Q
−1
i+1Riri is a good approximation of A−1

i . The
multigrid algorithm is presented in Algorithm 2.



Algorithm 2 Combinatorial Multigrid Algorithm
1: function xi = CMG(Ai,bi)
2: D = diagonal(Ai)
3: xi = D−1bi

4: ri = bi − Aixi

5: bi+1 = Riri
6: z = CMG(Ai+1,bi+1)
7: for i = 1 to ti − 1 do
8: ri+1 = bi+1 − Ai+1z
9: z = z + CMG(Ai+1, ri+1)

10: end for
11: xi = xi + RT

i z
12: xi = ri − D−1(Aixi − bi)
13: end function

IV. PROPOSED HYBRID CPU-GPU CIRCUIT SIMULATOR

A. CMG in Circuit Simulation
There is a fairly well known analogy between RLC networks

and graph Laplacians. As mentioned in Section II, the resulting
system is linear and SDD, thus the CMG algorithm can be
employed as a solver or preconditioner for the solution of Eq.
(2). In this work, we use the PCG iterative method described
in Algorithm 1 for the solution of the DC system. For the
preconditioner solve step (Mz = r), we harness the CMG
algorithm to improve the convergence rate. Our DC circuit
simulator can be described by the following steps:

• Parsing of SPICE netlist and MNA system creation.
• Construction of the CMG multilevel preconditioner.
• Solving using the CMG-preconditioned PCG method.

B. Single GPU Implementation
In the single GPU-accelerated implementation, we port all

the PCG and CMG operations to the GPU. This eliminates the
need for additional memory transfers between the host and the
device reducing the communication overhead, provided that
the GPU has sufficient memory to accommodate the working
set (especially the system matrix A and preconditioner M). On
the CPU side, after the SPICE netlist parsing and MNA system
construction, the CMG preconditioner hierarchy M is created.
Once the preconditioner is created, the host side is responsible
to allocate and copy the system matrix A, the right-hand side
vector b, the initial guess x(0), each preconditioner matrix Mi,
the inverse of its main diagonal invD(Mi), the restriction
operator Ri and some helper vectors to the GPU. When
the result is satisfactory, the solution x of the linear system
Ax = b is copied back to the CPU side. Note that all the
PCG/CMG control flow resides in the CPU. Also, the smallest
(level d) CMG grid is solved using Cholesky factorization on
the CPU, due to the small size of the system. Figure 1 depicts
the proposed single GPU-accelerated method. The working set
resides in the red box, PCG algorithm is inside the blue box
and CMG preconditioner solve step is in the green box.

C. A Dual-GPU Approach for Solving Larger Systems
In comparison with the CPU system memory, the GPU

device memory has considerably smaller capacity and the
working set for huge systems exceeds its memory. An ap-
proach to overcome this limitation is to re-design our imple-
mentation for a dual-GPU configuration. The idea is to assign
all the PCG operations to the first GPU, while the CMG-
preconditioned solve step is implemented on the second GPU.

SPICE netlist Parsing and 

MNA system construction (A)

CMG Preconditioner construction (M)

x = initial guess

Host (CPU) side Device (GPU) side

GPU Memory

memcopy

r = b - SpMV(A,x)

= / dot_product(q,p) 

x = saxpy(a,p,x) 

PCG Iteration

(Mz=r)z = CMG( ,r)

First PCG iteration?

Return solution x

yes

no

no

memcopyyes

r = saxpy(- ,q,r)

q = SpMV(A,p)
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p = saxpy( /  ,z,p) 

p = z

= dot_product(r,z) 

=

Convergence?
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= - 
= 
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= + z 
= - ( - )
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Fig. 1: Single GPU-accelerated circuit simulation method.

This optimization splits the working set almost equally, since
the PCG kernel operates only on the system matrix A, whereas
the CMG only on the preconditioner M. Figure 2 describes, in
a compact way, the proposed dual GPU-accelerated method.
The working set resides in the red boxes, the CPU part of
the PCG/CMG algorithms is inside the blue box and the
corresponding GPU kernels are in the green boxes. The initial
memory copies to the GPUs can be performed asynchronously.
The only need for communication between the GPUs is the
exchange of the vectors r, z, where the GPUDirect technology
can be used to provide fast Peer-to-Peer data transfers/accesses
without CPU involvement. Furthermore, the latest NVIDIA®
architectures (Pascal, Volta) provide the NVLink interconnect
which can offer significantly higher bandwidth.

D. Exploiting Multi-GPU Systems for Further Acceleration
Even greater acceleration (and solution of larger systems)

can be obtained by exploiting multi-GPU systems. The main
concept of such implementations is the partition of the ma-
trices and vectors to several blocks and the assignment of
each block to a GPU which is responsible to calculate the
corresponding part of the result. The communication between
the multiple hosts and GPUs can be achieved using the
Message Passing Interface (MPI). Several multi-GPU works
have been proposed [12], offering great scalability as the
number of available GPUs increases.

V. EXPERIMENTAL RESULTS

We developed an optimized C/C++ CPU-only version of the
proposed method which we use as a reference for our hybrid
CPU-GPU implementation. We take advantage of OpenMP
[13] and Intel® Math Kernel Library (MKL) [14] for the CPU



Fig. 2: Dual GPU-accelerated circuit simulation method.

version, while for the GPU mapping we exploit the CUDA
cuSPARSE and cuBLAS libraries [15]. Both MKL and CUDA
libraries contain optimized BLAS kernels for handling vectors
and sparse matrices.

It is worth mentioning that although we can store only the
upper part of A, as it is symmetric, the cuSPARSE SpMV
method for this case has to use atomic operations to resolve
the existing race conditions, resulting in poor performance. To
this end, we store the full matrix for our GPU implementation,
whereas for the CPU version we store only the upper part
of A. For both sparse matrix A and preconditioner M, the
Compressed Sparse Row (CSR) format is used.

For the evaluation we used a Linux workstation with an
Intel® 14-core Xeon® processor at 2.30GHz and 128GB
memory, along with an NVIDIA® Tesla™ K80 accelerator
of 4992 CUDA cores and 24GB total memory running at
0.87GHz (2 GPUs with 2496 cores and 12GB of global mem-
ory each). We have employed double-precision arithmetic,
while the convergence tolerance of PCG was set to 10−6.

Table I presents the runtimes and speedups achieved by our
dual-GPU implementation of Fig. 2, for the IBM power grids
[16]. Those benchmarks, explained in Table II, are resistive-
only and vary over a reasonable range of size. We can observe
that the GPU-accelerated CMG preconditioner solve step is up
to 4.50x faster than the corresponding CPU implementation.
The runtime speedup of the entire PCG method, including the
CMG preconditioner solve step, is up to 4.69x. Moreover, it
can be observed that as the dimension of the system increases,
the method achieves better speedups. Note that the proposed
implementation is far more suggested for transient simulation,
where the system has to be solved at multiple time-steps.
Finally, the exploitation of multi-GPU systems can result to
more significant speedups, as described in Section IV-D.

VI. CONCLUSION

In this paper, we have presented an hybrid CMG-
preconditioned iterative method for large-scale circuit sim-
ulation. Specifically, we focused on the acceleration of the
PCG algorithm on single and multiple GPUs, exploiting CMG

TABLE I: Runtime Results.

Benchmark CPU time (s) GPU time (s) Speedup
PCG CMG PCG CMG PCG CMG

ibmpg1 2.84 2.25 1.96 1.34 1.45X 1.67X
ibmpg2 0.40 0.30 0.21 0.16 1.92X 1.88X
ibmpg3 3.21 2.16 0.90 0.68 3.58X 3.18X
ibmpg4 2.15 1.47 0.52 0.38 4.13X 3.83X
ibmpg5 501.74 317.87 106.87 70.70 4.69X 4.50X

ibmpgnew1 576.08 368.99 128.31 88.73 4.47X 4.16X
ibmpgnew2 4.74 3.17 1.34 1.05 3.53X 3.02X

TABLE II: IBM Power Grid Benchmarks.

Benchmark #i #n #r #s #v #l
ibmpg1 10774 30638 30027 14208 14308 2
ibmpg2 37926 127238 208325 1298 330 5
ibmpg3 201054 851584 1401572 461 955 5
ibmpg4 276976 953583 1560645 11682 962 6
ibmpg5 540800 1079310 1076848 606587 539087 3

ibmpgnew1 357930 1461036 2352355 461 955 NA
ibmpgnew2 357930 1461039 1422830 929722 930216 NA

where i stands for current sources, n for nodes, r for resistors,
s for shorts, v for voltage sources and l for metal layers.

as a preconditioning technique. Experimental results on IBM
power grids using an NVIDIA® K80 dual GPU, showed
speedups up to 4.69x and 4.50x for the PCG and the CMG
preconditioning algorithm, respectively.
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