
Accurate Estimation of Dynamic Timing Slacks
using Event-Driven Simulation

Dimitrios Garyfallou*†, Ioannis Tsiokanos†, Nestor Evmorfopoulos*,
Georgios Stamoulis*, and Georgios Karakonstantis†

*Department of Electrical and Computer Engineering, University of Thessaly, Volos, Greece
†Institute of Electronics, Communications and Information Technology, Queen’s University Belfast, UK

Email: *{digaryfa, nestevmo, georges}@e-ce.uth.gr †{itsiokanos01, g.karakonstantis}@qub.ac.uk

Abstract—The pessimistic nature of conventional static timing
analysis has turned the attention of many studies to the exploita-
tion of the dynamic data-dependent excitation of paths. Such
studies may have revealed extensive dynamic timing slacks (DTS),
however, they rely on frameworks that inherently make worst-
case assumptions and still ignore some data-dependent timing
properties. This may cause significant DTS underestimation,
leading to unexploited frequency scaling margins and incorrect
timing failure estimation. In this paper, we develop a frame-
work based on event-driven timing simulation that identifies
the underestimated DTS, and evaluate its gains on various
post-place-and-route designs. Experimental results show that
our event-driven simulation scheme achieves on average 2.35%
and up-to 194.51% DTS improvement over conventional graph-
based techniques. When compared to existing frequency scaling
schemes, the proposed approach enables us to further increase the
clock frequency by up-to 10.42%. We also demonstrate that our
approach can reveal that timing failures may be up-to 2.94× less
than the ones estimated by existing failure estimation techniques,
under potential variation-induced delay increase.

I. INTRODUCTION

The advent of the aggressive technology scaling era has
introduced extensive static and dynamic parametric variations,
which may result in up-to 50% delay variations [1]. As a result,
this trend renders circuits prone to timing failures.

State-of-the-art. Conventionally, manufacturers address
such failures by adopting guardbands, which essentially pro-
vide sufficient timing margins to account for any variation-
induced delay increase [2]. However, such margins are consid-
ered to be overly pessimistic, since they are estimated statically
based on rare operating conditions. In fact, conventional static
timing analysis (STA) [3] may be effective in quickly revealing
the most critical paths, but assumes worst-case inputs at each
circuit node, thus ignoring the data-dependent excitation of
each path [2], [4]. This approach ultimately forces circuits
to operate at a much lower frequency or at a higher supply
voltage than what they could potentially achieve [1].

To circumvent such overheads, recent schemes try to reveal
any dynamic timing slack (DTS) that may exist in activated
paths by applying dynamic timing analysis (DTA) [5]–[10]. On
one side, many of these works [5], [6], [10] try to exploit the
available DTS for upscaling the frequency [5], [10], changing
the cycle time [6] or reducing the supply voltage [9]. On the
other side, other works exploit DTA in order to estimate timing
failure rates while considering the processed data [7], [8].

Common characteristic of the above works is that the
applied DTA is based on delay-annotated gate-level simulation

tools (e.g. ModelSim [11]). Although such tools account for
the paths that are dynamically activated, they still assume
fixed, worst-case delays which are estimated by Graph Based
Analysis (GBA). In fact, GBA provides a pessimistic delay
estimation that is based on STA assumptions [3]. None of the
above works evaluate the impact of GBA on DTS estimation.
A few recent works [9], [12] focus on improving the runtime of
graph-based DTA (GB-DTA) rather than improving the DTA
accuracy. This means that existing approaches may be leaving
a large amount of timing slacks hidden and unexploited.

Contributions. In this paper, we primarily aim at unveiling
the unexploited DTS ignored by all previous approaches based
on GB-DTA, by taking into consideration the actual data-
dependent path delays. The main contributions of this work
can be summarized as follows:
• We develop a framework to unveil DTS that has been un-

derestimated by prior works. To achieve this, we implement
a tool that is based on event-driven dynamic timing analysis
(ED-DTA), which has been established as the most accurate
DTA method [13].

• We compare the DTS calculated by ED-DTA with the DTS
estimated by a GB-DTA method which is based on delay-
annotated gate-level simulation. Our results indicate that
ED-DTA leads to 2.35% on average and up-to 194.51%
more DTS, in terms of relative difference, compared to
GB-DTA. Considering only the critical activated paths, the
average DTS improvement is increased to 11.2%.

• We demonstrate the impact of underestimated DTS on clock
frequency and timing failures. First, we measure the point
of first failure (PoFF) between ED-DTA and GB-DTA, indi-
cating the frequency improvement. Second, we estimate the
timing errors manifested under potential variation-induced
worst-case delay increase levels for ED-DTA and GB-DTA.
The rest of the paper is organized as follows. Section II

discusses the background and the motivation of our work,
while Section III describes the proposed approach and the
implemented design flow. Section IV presents the experimental
results. Conclusions are drawn in Section V.

II. BACKGROUND AND MOTIVATION

A. Static Timing Analysis

Typically, a digital circuit consists of circuit elements
(i.e. gates) connected with interconnects, and can be repre-
sented as a graph composed of nodes (input/output ports and

gate pins), and edges (i.e. timing arcs) which are connecting
the nodes. Each distinctive directed connection of timing
arcs, thus nodes, forms a timing path. Each of the numerous
timing paths require some time to propagate the signal, which
essentially defines the delay of each path. This path delay is
computed by adding up the delays of all timing arcs included
in the path. Note that each timing arc delay is a function of
input slew which is defined as the amount of time required
for the signal to transition from high-to-low or low-to-high.
The input slew on a timing arc also determines the slew on
the output node of the arc.

One of the most essential steps in the design of any
circuit is the identification of the worst-case critical path and
the estimation of its delay, which eventually determines the
maximum operational frequency of the circuit. Such a step
requires to carry out STA, which is typically done using an
early-late split, where each path has an early (lower) bound
and a late (upper) bound on its delay to account for various
parametric variations [3].

STA propagates the upper and lower slew bounds on the
nodes through the timing arcs. Based on that, it calculates
the earliest and the latest timing instants that a signal reaches
a circuit node. These timings are quantified as earliest and
latest arrival time (at), while the limits imposed on a circuit
node for proper logic operation are quantified as earliest and
latest required arrival time (rat). The difference between the
required arrival time and signal arrival time at a circuit node
determines the slack, which quantifies how well the timing
constraints are met. That is, a positive slack means the required
time is satisfied, and a negative slack means the required time
is in violation. The rat and slack are defined in the following
equations, taking into consideration the setup constraint tsetup
which denotes the amount of time that the signal should be
stable before the active clock edge on every flip-flop (FF) to
ensure proper operation:

ratsetup = ratlateD = atearlyCK + Tclk − tsetup (1)

slacksetup = slacklate
D = ratlateD − atlateD (2)

where Tclk is the clock period, and CK and D denote the
clock and the data pin of the testing FF, respectively.

To provide a quick estimation of the worst setup timing
slack among all paths, which is adequate for determining
Tclk, GBA is applied which assumes worst-case (upper) arrival
time and slew bounds on each node [3]. GBA which is
essentially the default STA method used in commercial tools
(e.g. PrimeTime) may provide quick estimations but ignores
the lower or intermediate arrival times and slew bounds. As
a result, GBA may lead to a substantially different slack
estimation than the actual one, which depends on input data.

B. Dynamic Timing Analysis
It has been recently estimated [8] that roughly 99% of

critical paths are triggered by less than 10% of all operations
and the chance to experience the worst-case input conditions
and the upper slew bounds assumed by STA is very low [14].
These findings have turned the attention of many studies into
the estimation of the so-called Dynamic Timing Slack (DTS)
that may exist within any path depending on the dynamically

changing processed data [5]–[10]. Such works aim at revealing
any unexploited room for occasional frequency up-scaling [5],
[6], [10] or voltage down-scaling [9] and for estimating
timing error rates in speculative processors [7], [8]. The
majority of such studies rely on frameworks that use delay-
annotated gate-level simulation tools (e.g. ModelSim [11]).
However, the annotated delays inherently impose significant
pessimism in slack estimation, since they are extracted (in a
form of a Standard Delay Format [SDF] file) from tools (e.g.
PrimeTime) that are based on GBA. Therefore, although the
developed frameworks can account for the data-dependent path
activation, they may still underestimate the available DTS.

To better understand the source of potential slack underesti-
mation, let us take a better look on few shortcomings of GBA
along with few examples.

1) Slew merge points. When two slew values arrive at the
same node of the graph, GBA propagates forward the worst
slew and at. The most common example of a slew merge point
is an output pin of a gate where multiple timing arcs terminate.
In Fig. 1a, we explain how the late timing information of
an AND gate is propagated across the timing graph. In this
example, we can see that the worst (max) slew (highlighted
in red) and worst (max) at (highlighted in green) on pin U3/A
are propagated through different paths. As a result, the delay
from U2/B to U3/Z appears to be bigger than real physical
delay of the path, since the timing arc delay dU3/A→U3/Z has
been determined by the slew of a different path.

2) Worst-case input state assumptions. Another major
source of pessimism in GBA, is the worst-case input state
assumptions. In more detail, some gates (e.g. XOR, XNOR,
MUX) are state-dependent. This means that a specific transi-
tion (rise or fall) on the output pin of a gate can occur for
different input transition combinations. Fig. 1b demonstrates
the late timing propagation for a XOR gate. In this case, GBA
propagates the worst timing information, resulting in even
more pessimism in the delay estimation of upstream paths.
Note that the worst propagated slew (highlighted in red) at
the output pin U1/Z corresponds to the rise transition/slew
propagated from U1/A, when U1/B is at logic 0.

To demonstrate the inaccuracy involved in GB-DTA
methodologies, let us give an example of DTS estimation for
a specific activated path. In Fig. 2, GBA analysis has been
performed on a timing graph, where the example gates of
Fig. 1 have been combined together. For this initial logic state
of the circuit, when the signal on U1/A makes a falling tran-
sition (1 → 0), the path from U1/A to FF2/D is activated.
However, recall that the worst slew on U1/Z has been chosen
for the rising (0→ 1) transition of U1/A (see Fig. 1b), which
determines the worst-case annotated delays dU2/A→U2/Z and

A

B

Z A

at = 0.25
 U2/A

at = 0.6 U2/B

at = 0.5 U2/Z

at = 0.95 U3/Z

at = 0.75
 U2/Z

ZU2
U3

d = 0.25A

d = 0.15 B

d = 0.2 A

(a) Slew merge points

U1

B

A

d = 0.25 A (B = 0)

Z
 Zat = 0.25

at = 0 B at = 0 B

at = 0 A at = 0 A d = 0.20 A (B = 1)

d = 0.15 B (A = 0)
d = 0.10 B (A = 1)

at = 0.2

at = 0.15 Z at = 0.1 Z

 Z

(b) Worst-case input state assumptions

Fig. 1: Main sources of pessimism in graph based analysis.

A

B
Z Z

U2 U3

d = 0.25 A d = 0.2 A

Q

Q
SET

CLR

D
U1

d = 0.2 A (B=1)

Q

Q
SET

CLR

DZ
FF1

CK

D
FF2

CK

D

at = 0.2
 U1/Z at = 0.45

 U2/Z at = 0.65
 FF2/DA

B

at = 0
 U1/A

A

rat = 1
slack = 1 –
0.65 = 0.35

 GBA Annotated Delays
 GB-DTA Pessimism

1
1

 Real at, rat
and slack?

Text

Real delay/at for
these slews?

Fig. 2: Graph based analysis pessimism in GB-DTA.

dU3/A→U3/Z . Thus, atlateFF2/D is calculated based on those
delays. Note that the atearlyFF2/CK is assumed to be always equal
to the worst-case value calculated in GBA, since the clock path
usually consists only of series of inverters/buffers and does not
include slew merge points. It is also important that, except
from atlateFF2/D, ratlateFF2/D induces additional pessimism in
DTS estimation since the tsetup value is calculated based on
the worst slew propagated on FF2/D, during GBA. Assuming
atearlyFF2/CK = 0ns, Tclk = 1.2ns and tsetup = 0.2ns, GB-DTA
estimates the DTS slacklateFF2/D = 1 − 0.65 = 0.35ns (based
on eq. 1, 2), indicating that the slack is overly pessimistic
compared to the path’s real physical DTS. This indicates that
there is a need to reveal the amount of slack that remains
unexploited by existing GB-DTA frameworks [5]–[10] and up-
to what extent it can affect the point of first failure (PoFF),
the dynamic frequency scaling and the failure rate estimation.

III. PROPOSED APPROACH

In this section, we present our approach for unveiling DTS
that may have been underestimated by GB-DTA methods used
in prior works. To this end, we describe the principles and
operation of our developed ED-DTA tool and its integration
within a state-of-the-art flow used to evaluate DTS.

A. Event-driven DTA (ED-DTA)
Our approach is based on event-driven timing simulation,

which is considered as the most accurate DTA method [13].
In the context of ED-DTA, a logic transition at a circuit node is
modelled as an event. Therefore, every event is characterized
by the logic value, the slew and the at of the corresponding
transition. This allows to track every single node excitation
that may take place within any timing path of the circuit as
opposed to the graph-based methods. In ED-DTA, events are
processed in the correct time order by building and traversing
a time-sorted event list. During the dynamic simulation, the
event with the smallest at is chosen to be propagated forward
to its fanout nodes followed by the rest of the events.

Our event-driven approach uses both functional and timing
models of the gates. An event arriving at an input pin of a gate
causes the functional evaluation of the gate using its functional
model. Whenever the logic value on the output pin of a gate
changes, a new event is created and has to be placed in the
appropriate point in the event list to ensure causality. For this
purpose, the gate’s timing model is used to calculate the timing
characteristics (slew, at) for this output node and schedule the
generated event, according to its at, for later processing.

The key idea behind the proposed method is that the slew
and at of the generated event depend only on the triggering

U1/Aat = 0

A

B
Z Z

U2 U3

d = 0.18A d = 0.1 A

Q

Q
SET

CLR

D
U1

d = 0.2 A (B=1)

Q

Q
SET

CLR

DZ
FF1

CK

D
FF2

CK

D

A

B
A

 rat = 1.1
slack = 1.1 – 0.48 = 0.62

 Differences compared to GB-DTA

1
1

U1/Zat = 0.2

U2/Zat = 0.38

FF2/Dat = 0.48

Fig. 3: Accurate DTA using Event-Driven Simulation.

input event. On top of that, the implemented gate timing
analysis does not make worst-case assumptions, but takes into
account the current logic state of all input-output pins. As
described in Section II, correct slew and at propagation along
a timing path is crucial since it determines the delay of timing
arcs and the slew, at, tsetup, rat and slack on the endpoint.

To better understand the impact of our approach on the
accuracy of DTS estimation, let us take a closer look on
the example shown in Fig. 3, where we consider the same
setup timing check as shown in Fig. 2. In the case of our
approach, when the signal in U1/A makes a falling transition
(1→ 0), an event is created on U1/A (Event 1) which triggers
a rising transition (0 → 1) on U1/Z and the scheduling of
the corresponding event (Event 2). In contrast to GBA, the
real output slew is calculated and stored on the triggered
event to be propagated forward. To this end, when ED-
DTA processes the event on U1/Z, the real output slew on
U2/Z and timing arc delay dU2/A→U2/Z are calculated, to
schedule the event on U2/Z (Event 3) with its accurate timing
characteristics (slew and at). Following the described event
propagation procedure, an event reaches on the path endpoint
FF2/D (Event 4) at atFF2/D = 0.48ns. Assuming that the
propagated slewFF2/D (which is smaller than the worst slew
propagated by GBA) now results in tsetup = 0.1ns, and that
atFF2/CK = 0ns and Tclk = 1.2ns, ED-DTA estimates the
correct DTS slackFF2/D = 1.1 − 0.48 = 0.62ns (based on
eq. 1, 2), which is significantly bigger than the worst-case
value estimated by GB-DTA.

The developed ED-DTA tool operates on the gate-level and
represents the circuit as a timing graph. In our implementation,
an event is characterized by the node on which the transition
occurs, the slew, the at and the logic value of the transition.
Note that the timing and functional models of the gates are
retrieved from the “standard-cell” library which was used to
implement the design.

The details of ED-DTA tool are described in Algorithm 1.
Our tool takes the gate-level netlist and the signal activity
information (VCD) and performs both setup and hold dynamic
timing analysis. After creating the timing graph, it reads the
VCD file to schedule input-vector events in the event-list and
to initialize the circuit to its steady state. During event-driven
simulation, the events with the smallest at are propagated
through timing arcs to their fanout nodes. If the fanout node
is a path endpoint, the tool computes the setup and hold DTS,
and an error is reported in case a violation occurs.

B. Realization of the Proposed Approach
The ED-DTA tool described above is integrated within a

state-of-the-art Electronic Design Automation (EDA) work-

Algorithm 1 Event-driven DTA (ED-DTA)
1: Read gate-level netlist and create timing graph
2: Load VCD file and schedule input events in event list
3: Initialize circuit to its steady-state
4: while event list not empty do
5: Propagate events scheduled on current time to

their fanout nodes
6: if fanout node is a path endpoint then
7: Calculate DTS and perform setup/hold timing check
8: else
9: Evaluate logic on output node of fanout gate

10: if output node logic value has changed then
11: Calculate output slew and at, and schedule

event in event list
12: end if
13: end if
14: Remove obsolete events from event list
15: Advance current time
16: end while

flow along with the traditional graph-based DTA and STA
methods. The overall workflow is depicted in Fig. 4, where
our modifications compared to the conventional EDA flow are
highlighted in orange. As can be seen, our workflow consists
of a design and an analysis phase.

The first step of the design phase is logic synthesis which
is followed by the place and route steps. In this paper, each
design is synthesized, placed and routed on the 45nm NanGate
standard cell library, using Design Compiler and Innovus,
respectively. Note that these steps are performed utilizing
optimizations which aim at achieving maximum performance.

The first step of the analysis phase is to verify that the design
has met the timing closure. To this end, we developed a graph-
based STA (GB-STA) tool based on [15], which provides
accurate results compared to commercial tools. Both GB-
STA and ED-DTA tools implement the Elmore and Composite
Current Source (CCS) timing models for wire and gate delay
estimation, respectively. Note that wire delay estimation can be
improved by employing a more accurate interconnect timing
analysis method [16]. GB-STA tool has also been extended
to annotate the worst-case wire and gate delays in an SDF
file, which is essential for GB-DTA. For the sake of this
analysis, we use post-layout gate-level simulation supported
by ModelSim. To enable characterization of DTS, ModelSim
outputs a VCD file that contains information about the value
changes occurred during simulation. More specifically, in
VCD file, we monitor the clock input port, output ports and
inputs (data and clock) of all flip-flops. This file is then
provided to a custom post-processing tool for DTS estimation.
For each path endpoint, this tool identifies the arrival time of
the last event in each clock cycle and relates it to the arrival
time of the next active clock edge, to estimate the DTS. At the
final step of the analysis phase, we compare the DTS measured
by ED-DTA with the one estimated by GB-DTA.

To verify that ED-DTA tool implements the functionality
of the specification correctly, we compare the logic values on
each output port extracted by ED-DTA tool against ModelSim.

IV. EVALUATION RESULTS

In this section, we evaluate our methodology for revealing
the overly pessimistic estimation of DTS, existing in GB-DTA

Synthesis
Design Compiler

Place & Route
Innovus

.lib .spef .v .sdc .vcd

Standard Cell Library

RTL

.lib, .lef

.v .lib

Netlist
ParasiticsCell timing information

Design
constraints Input Vectors

ED-DTA
Custom Tool

GB-STA
Custom Tool

Gate-level
Simulation
ModelSim

STA Slack
Estimation

DTA Slack
Estimation

Comparator

Analysis Phase

Event-Driven DTA

DTA Slack
Estimation

Graph-Based STA Graph-Based DTA

.v, .lib, .spef, .sdc, .vcd .v, .lib, .spef, .sdc .v, .vcd

Post-processing
Tool

.sdf

Design Phase

 Modifications

Fig. 4: Workflow of the proposed approach.

methods. First, we compare the DTS estimated by ED-DTA
(DTSED) with the DTS extracted by conventional GB-DTA
(DTSGB). Then, we explore potential gains of ED-DTA by
exploiting the available DTS. For such an analysis, we use the
c6288 and s344 benchmarks from the ISCAS suite [17]; and
the fir, brent.kung.32b, kogge.stone.32b, sobel, multiplier.32b
and neural.network benchmarks from the AxBench suite [18].
These benchmarks represent a variety of algorithms that covers
a wide range of domains, i.e. arithmetic computation, machine
learning, signal and image processing. Since DTS depends on
the input data, we also extract 100k random generated input
vectors for each benchmark.

A. Evaluation of DTS

To evaluate the efficacy of our approach, we first estimate
DTSED, DTSGB and the static timing slack of GB-STA
(STSGB). Then, we measure the absolute error (AEDTA)
between DTSED and DTSGB for every activated path i, as:
AEDTA(i) = |DTSGB(i) −DTSED(i)|. To quantify how
big or small AEDTA is relatively to DTSGB , we report the
DTS improvement achieved by ED-DTA, which is defined as:
DTSimp.(i) =

∣∣∣DTSGB(i)−DTSED(i)
DTSGB(i)

∣∣∣ · 100 = AEDTA(i)
|DTSGB(i)| · 100

where i denotes a specific activated path.
Table I lists these observations along with the size and

clock period (Tclk) for each benchmark. Note that the aver-
age (mean) DTSGB is up-to 4.3× bigger than the average
STSGB . According to this table, the average AEDTA ranges
up-to 0.049ns, while the maximum (max) AEDTA observed
is equal to 0.158ns. As shown, the worst-case assumptions in
GB-DTA lead to considerably high inaccuracy. In particular,
ED-DTA provides varying degrees of DTS improvement, with
the maximum DTSimp. ranging from 13.34% in the case of
neural.network to 194.51% for brent.kung.32b. Overall, the
proposed ED-DTA reveals on average 2.35% more DTS than
GB-DTA. Fig. 7 depicts the distribution of DTS improvement
across all activated paths for the considered benchmarks. Note

TABLE I: Static Timing Slacks, Dynamic Timing Slacks and DTS improvement achieved by ED-DTA for various benchmarks

Benchmark # Gates Tclk
(ns)

STSGB
(ns)

DTSGB
(ns)

DTSED
(ns)

AEDTA
(ns)

DTS Improvement
(DTSimp.)

min mean min mean min mean mean max mean max
s344 91 0.34 0.008 0.085 0.042 0.199 0.046 0.203 0.002 0.011 1.19% 20.53%

fir 146 0.7 0.001 0.131 0.014 0.284 0.017 0.289 0.003 0.011 1.11% 27.73%
brent.kung.32b 319 0.38 0.003 0.046 0.003 0.122 0.005 0.127 0.003 0.014 3.15% 194.51%
kogge.stone.32 557 0.34 0.003 0.022 0.003 0.073 0.005 0.079 0.004 0.015 5.41% 86.27%

sobel 564 0.93 0.003 0.249 0.043 0.546 0.064 0.556 0.008 0.036 1.57% 43.55%
c6288 2488 2.94 0.006 0.608 0.615 1.974 0.724 2.024 0.049 0.158 2.81% 20.53%

multiplier.32b 6343 0.96 0.007 0.104 0.043 0.443 0.061 0.455 0.011 0.043 2.43% 38.11%
neural.network 13236 1.14 0.001 0.486 0.137 0.785 0.144 0.794 0.008 0.035 1.11% 13.34%

that the minimum (min) DTS improvement is evaluated to zero
across all benchmarks. This can be attributed to the fact that
there are activated paths with exactly the same timing behavior
and hence identical DTSGB and DTSED.

Intuitively, input data that activate critical paths increase
DTSimp.. This can be attributed to the fact that critical paths,
which usually consist of more slew merge points and input-
state dependent gates compared to less critical paths, are more
likely to be affected by the two main sources on pessimism
in GB-DTA (see Section II).

B. DTS & Dynamically Activated Critical Paths

To experimentally verify this intuition, we extract the top
5% critical activated paths (5% of the activated paths with the
smallest slack). Fig. 5 shows the average and maximum DTS
improvement across all benchmarks when only the critical
paths are considered. We observe that the average DTSimp.

has been increased to 11.2%. Additionally, the maximum
DTSimp. of critical paths is equal to the maximum DTSimp.

of all activated paths, verifying our intuition that critical paths
impose the worst-case inaccuracy in GB-DTA.

C. Dynamic Frequency Scaling & Timing Failures

The underestimated slacks limit the gains achieved by
works that exploit DTS [5]–[8], [10]. Such works leverage the
available DTS to reduce the clock period up-to the PoFF [5],
[6], [10] or estimate the error rates under potential variation-
induced delay increase levels [7], [8].

PoFF and the number of timing errors strongly depend on
the available DTS (a negative slack means that the path will

6.37
10.41 9.38

14.67

25.15

11.89
9.44

2.35

Benchmarks

DT
S

Im
pr

ov
em

en
t (

%
) mean

max

20.53

27.73

194.51

34.21

43.55

20.33

38.11

13.34

s3
44 fir

br
en
t.k
un
q.3

2b

ko
gg
e.s
to
ne
.32

b
so
be
l

c6
28
8

mu
ltip

lie
r.3
2b

ne
ur
al.
ne
tw
or
k0

10

20

30

40

50

Fig. 5: Mean and maximum DTS improvement achieved by
ED-DTA under the top 5% critical activated paths.

fail). Fig. 6 shows the slack distributions obtained by ED-
DTA and GB-DTA for c6288 and sobel benchmarks. For the
sake of simplicity, the horizontal axis shows only the slacks
that are less than 50% of Tclk (see Table I). In this figure,
it can be seen that PoFF varies considerably under GB-DTA
and ED-DTA. Particularly, in the case of c6288, based on GB-
DTA, PoFF is measured when Tclk was reduced to 2.325ns
(i.e. DTSGB = 0.615ns). Conversely, ED-DTA under c6288
incurs PoFF at Tclk = 2.216ns (i.e. DTSED = 0.724ns).
In the case of sobel, PoFF under GB-DTA and ED-DTA
occurs when Tclk = 0.887ns (DTSGB = 0.043ns) and Tclk =
0.866ns (DTSED = 0.064ns), respectively. Considering all the
examined benchmarks, ED-DTA results in 1.89% on average
and up-to 6.22% higher clock frequency than GB-DTA. This
improvement corresponds to the minimum achievable clock
frequency increase, since PoFF is measured based on the most
critical path across all clock cycles of the running application.

Recently, instruction or cycle based frequency scaling
schemes have been proposed [5], [6]. To estimate the potential
gains that can be achieved by applying ED-DTA to such
schemes, we extract the most critical activated path on each
cycle which determines PoFF and the achievable frequency
for this cycle. For each benchmark, we measure the average
(across all cycles) frequency improvement (in terms of relative
change over the nominal frequency) achieved by GB-DTA and
ED-DTA. Overall, ED-DTA leads to 3.77% on average and up-
to 10.42% higher average frequency increase than GB-DTA.

GB-DTA not only leads to pessimistic estimation of DTS,
but also exhibits a substantial amount of excited paths with
such inaccurate slacks. This finding indicates that there is an
increased probability of timing failures in GB-DTA under a
potential delay increase. To better illustrate this, let us assume
two clock reduction (CR) levels which represent potential
variation-induced worst-case delay increase. Specifically, we
reduce Tclk by 25% (referred to as CR1) and 40% (referred

0.5 1 1.5
Dynamic timing slack (ns)

10 0

10 4

Ac

tiv
at

ed
 P

at
hs

GB-DTA
ED-DTA

10 2

CR1

CR2

0.75 1.25

(a) c6288

0 0.2 0.4
Dynamic timing slack (ns)

10 0

10 4

Ac

tiv
at

ed
 P

at
hs

GB-DTA
ED-DTA

10 2

0.50.1 0.3

CR1
CR2

(b) sobel

Fig. 6: DTS distributions obtained by ED-DTA and GB-DTA.

0 5 10 15 20
DTS Improvement (%)

10 0

10 1

10 2

10 3

Ac
tiv

at
ed

 P
at

hs

s344

min: 0
mean: 1.19
max:20.53

0 10 20
DTS Improvement (%)

10 0

10 2

10 4

10 6

Ac

tiv
at

ed
 P

at
hs min: 0

mean: 1.11
max: 27.73

28

fir

0 50 100 150 200
DTS Improvement (%)

10 0

10 2

10 4

10 6

Ac

tiv
at

ed
 P

at
hs min: 0

mean: 3.15
max: 194.51

brent.kung.32b

0 20 40 60 80
DTS Improvement (%)

10 0

Ac

tiv
at

ed
 P

at
hs

min: 0
mean: 5.41
max: 86.27

kogge.stone.32b

87

10 2

10 4

10 6

0 10 20 30 40

10 0

10 6

Ac

tiv
at

ed
 P

at
hs

DTS Improvement (%)

10 2

10 4

10 8

44

min: 0
mean: 1.57
max: 43.55

sobel

0 5 10 15 20
DTS Improvement (%)

10 0

#A
ct

iv
at

ed
 P

at
hs min: 0

mean: 2.81
max: 20.33

c6288

10 2

10 4

10 6

10 7

0 10 20 30 40
DTS Improvement (%)

10 0

A

ct
iv

at
ed

 P
at

hs min: 0
mean: 2.43
max: 38.11

multiplier.32b

10 2

10 4

10 6

10 8

0 5 10
DTS Improvement (%)

10 0

A

ct
iv

at
ed

 P
at

hs min: 0
mean: 1.11
max: 13.34

neural.network

14

10 2

10 4

10 6

10 8

Fig. 7: Distributions of DTS improvement achieved by ED-DTA, relatively to GB-DTA, across all dynamically activated paths.

to as CR2). CR1 and CR2 are consistent with the levels of
variation-induced delay increase that have been reported in the
literature [1], [4]. As depicted in the bottom right of Fig. 6,
under c6288 and CR1, ED-DTA manifests no timing failures,
while GB-DTA incurs 36 timing failures. At CR2, GB-DTA
results in 2.94× more failures than ED-DTA. Similar results
are obtained in the case of sobel, where GB-DTA manifests
1.43× more timing failures compared to ED-DTA at CR2.

D. ED-DTA Runtime

For the performance evaluation of our approach, we use a
Linux workstation with an Intel 8-core Xeon CPU running
at 2.1GHz. ED-DTA runtimes range from 9.4s for s344 up-
to 8019s for multiplier.32b. Note that the proposed ED-DTA
tool has been developed for single CPU execution, since the
primary purpose of this paper is to unveil the unexploited DTS
ignored by GB-DTA methodds, rather than to improve DTA
performance. However, ED-DTA runtime can be improved by
up-to three orders of magnitude by utilizing Graphics Process-
ing Units (GPUs) to exploit the available parallelism [19].

V. CONCLUSIONS

In this paper, we presented a framework to unveil the pes-
simism in DTS estimation imposed by conventional GB-DTA
methods which inherently rely on worst-case assumptions. To
achieve this, we developed an accurate ED-DTA tool that
considers the actual data-dependent path delays. Experimental
results show that our ED-DTA approach unveils 2.35% on
average and up-to 194.51% more DTS, compared to GB-
DTA. When only the critical activated paths are considered,
the average DTS improvement is increased to 11.2%. We
also demonstrated that the proposed approach enables further
increase of the clock frequency by up-to 10.42% compared
to existing frequency scaling schemes, and reveals that timing
failures can be up-to 2.94× less than the ones estimated by
existing failure estimation techniques.

ACKNOWLEDGMENTS

This work is supported by the European Community Hori-
zon 2020 programme under grant no. 688540 (UniServer).

REFERENCES

[1] P. Gupta et al, “Underdesigned and opportunistic computing in presence
of hardware variability,” TCAD, vol. 32, 2013.

[2] G. Karakonstantis et al., “Containing the nanometer ”pandora-box”:
Cross-layer design techniques for variation aware low power systems,”
IEEE JETCAS., vol. 1, 2011.

[3] J. Bhasker et al., Static Timing Analysis for Nanometer Designs: A
Practical Approach, New York, USA: Springer, 2009.

[4] D. Bull et al., “A power-efficient 32 bit arm processor using timing-error
detection and correction for transient-error tolerance and adaptation to
pvt variation,” JSSC, vol. 46, 2011.

[5] A. Rahimi et al., “Application-adaptive guardbanding to mitigate static
and dynamic variability,” Transactions on Computers, vol. 63, 2014.

[6] J. Constantin et al., “Exploiting dynamic timing margins in micropro-
cessors for frequency-over-scaling with instruction-based clock adjust-
ment,” in DATE, 2015.

[7] X. Jiao et al., “Clim: A cross-level workload-aware timing error predic-
tion model for functional units,” Transactions on Computers, vol. 67,
2018.

[8] J. Xin et al., “Identifying and predicting timing-critical instructions to
boost timing speculation,” in MICRO, 2011.

[9] H. Cherupalli et al., “Exploiting dynamic timing slack for energy
efficiency in ultra-low-power embedded systems,” in ISCA, 2016.

[10] I. Tsiokanos et al., “Low-power variation-aware cores based on dynamic
data-dependent bitwidth truncation,” in DATE, 2019.

[11] ModelSim: https://www.mentor.com/products/fv/modelsim/.
[12] H. Cherupalli et al., “Scalable n-worst algorithms for dynamic timing

and activity analysis,” in ICCAD, 2017.
[13] A. Krstic et al., “Pattern generation for delay testing and dynamic timing

analysis considering power-supply noise effects,” TCAD, vol. 20, 2001.
[14] R. G. Dreslinski et al., “Near-threshold computing: Reclaiming moore’s

law through energy efficient integrated circuits,” Proceedings of the
IEEE, vol. 98, 2010.

[15] C. Kalonakis et al., “Tktimer: fast & accurate clock network pessimism
removal,” in ICCAD, 2014.

[16] D. Garyfallou et al., “A sparsity-aware MOR methodology for fast and
accurate timing analysis of VLSI interconnects,” in SMACD, 2019.

[17] M. C. Hansen et al., “Unveiling the ISCAS-85 benchmarks: A case
study in reverse engineering,” IEEE Design & Test, vol. 16, 1999.

[18] A. Yazdanbakhsh et al., “Axbench: A multiplatform benchmark suite
for approximate computing,” IEEE Design & Test, vol. 34, 2017.

[19] E. Schneider et al., “Multi-level timing simulation on gpus,” in ASP-
DAC, 2018.

